Bluetooth:

With Low Energy Comes Low Security

Mike Ryan iSEC Partners

USENIX Security / WOOT Aug 13, 2013

Bluetooth Smart / Bluetooth LE

Outline

- →What is Bluetooth Low Energy?
- →Protocol overview
- →Sniffing Techniques
- →[In]security
- →Injection

Outline

- →What is Bluetooth Low Energy?
- →Protocol overview
- →Sniffing Techniques
- →[In]security

→Injection

What is Bluetooth Low Energy?

What is Bluetooth Low Energy Smart?

- → New modulation and link layer for low-power devices
- → vs classic Bluetooth
 - Incompatible with classic Bluetooth devices
 - → PHY and link layer almost completely different
 - → High-level protocols reused (L2CAP, ATT)
- → Introduced in Bluetooth 4.0 (2010)

→ AKA BTLE

Where is **BTLE**?

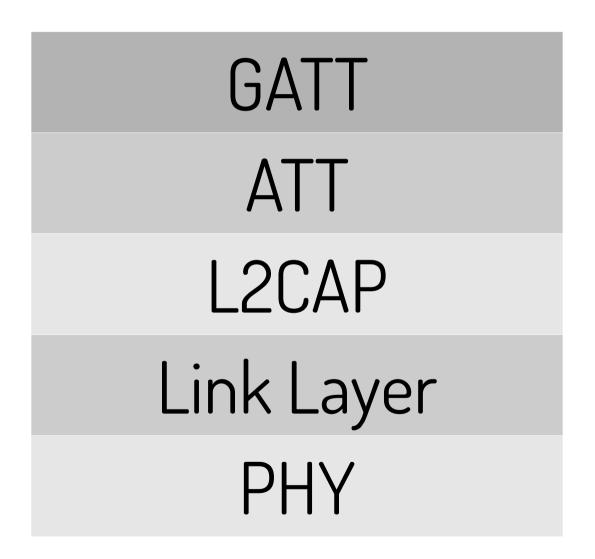
- → High end smartphones
- → Sports / fitness devices
- → Door locks
- → Upcoming medical devices

Patters Tault Co. 128	
Parametric	Blood glucose monitor
Press Taxonto	Property and a second sec
Patrick Druget Hamper	Propagation and a subscription
Press	

By The Numbers

- → 186% YoY Growth for H1 2013¹
- → "over 7 million Bluetooth Smart ICs were estimated to have shipped for use in sports and fitness devices in the first half of 2013 alone"
- → "Analysts Forecast Bluetooth Smart to Lead Market Share in Wireless Medical and Fitness Devices"²

¹http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=170 ²http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=165


Mike Ryan

Bluetooth Smart / Bluetooth LE

Outline

- →What is Bluetooth Low Energy?
- →Protocol overview
- →Sniffing Techniques
- →[In]security
- →Injection

Protocol Stack

PHY Layer

- → GFSK, +/- 250 kHz, 1 Mbit/sec
- → 40 channels in 2.4 GHz
- → Hopping

Physical Channels

→ Advertising: 3 channels

→ Data:

37 channels

RF Channel	RF Center Frequency	Channel Type	Data Channel Index	Advertising Channel Index
0	2402 MHz	Advertising channel		37
1	2404 MHz	Data channel	0	
2	2406 MHz	Data channel	1	
		Data channels		
11	2424 MHz	Data channel	10	
12	2426 MHz	Advertising channel		38
13	2428 MHz	Data channel	11	
14	2430 MHz	Data channel	12	
		Data channels		
38	2478 MHz	Data channel	36	
39	2480 MHz	Advertising channel		39

Mike Ryan

USENIX WOOT, August 2013

Hopping

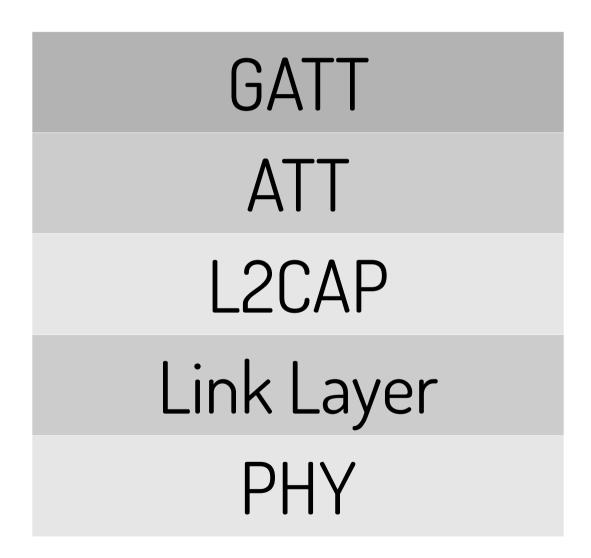
- → Hop along 37 data channels
- → One data packet per channel
- \rightarrow Next channel \equiv channel + hop increment (mod 37)
- → Time between hops: hop interval

$$3 \rightarrow 10 \rightarrow 17 \rightarrow 24 \rightarrow 31 \rightarrow 1 \rightarrow 8 \rightarrow 15 \rightarrow ...$$

hop increment = 7

Link Layer

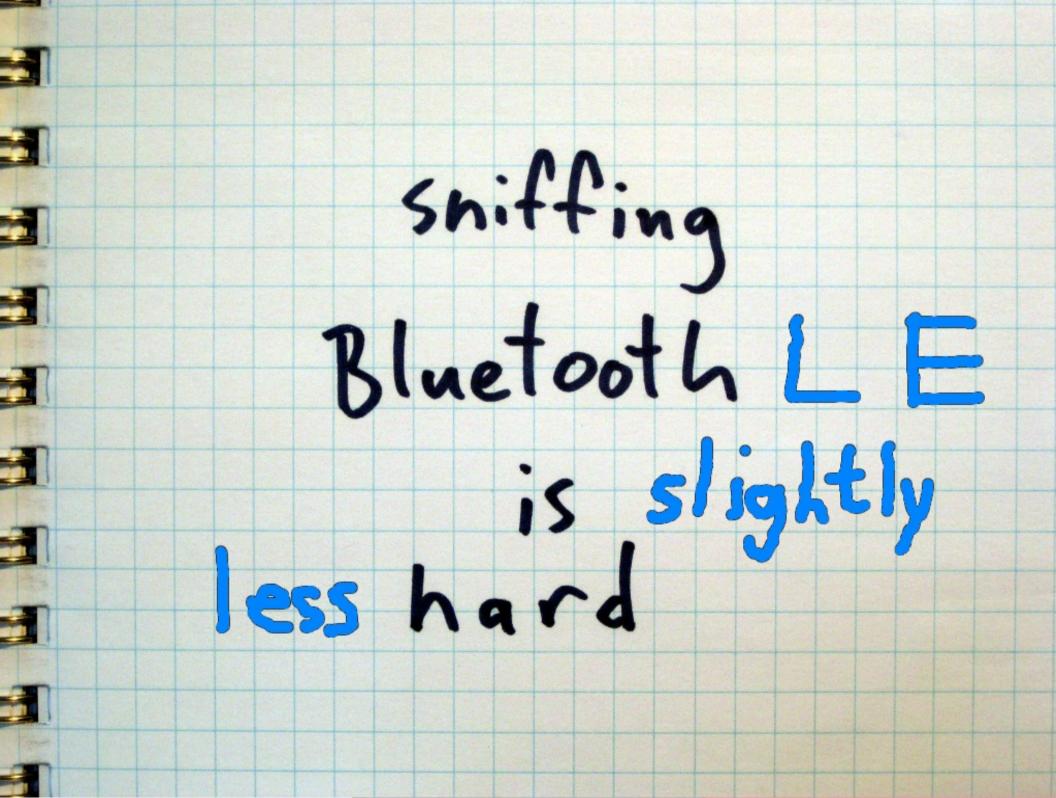
LSB	MSB		
Preamble	Access Address	PDU	CRC
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)


Figure 2.1: Link Layer packet format

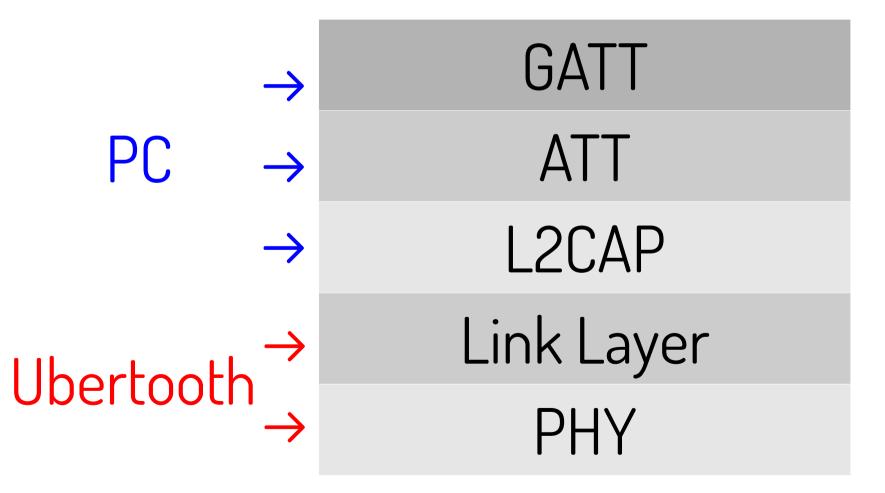
- PDU min of 2 bytes due to 2 byte header
- LLID: Control vs Data
- Length

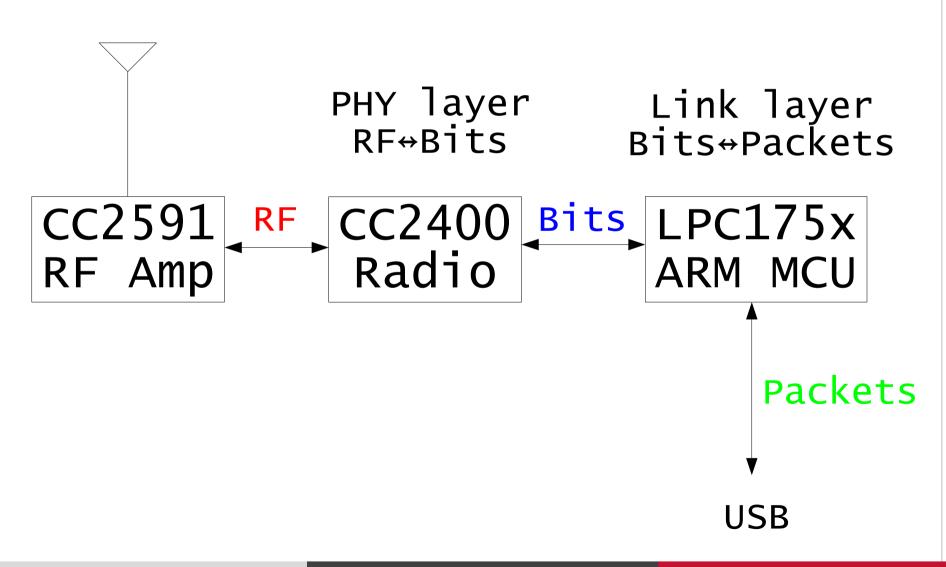
L2CAP and Beyond

- → Use existing decoders for this
- → Not a Hard Problem[™]


Recap

Outline


- →What is Bluetooth Low Energy?
- →Protocol overview
- →Sniffing Techniques
- →[In]security
- →Injection


How do we sniff it?

Start at the bottom and work our way up:

Bluetooth Smart / Bluetooth LE

Ubertooth Block Diagram

Mike Ryan

USENIX WOOT, August 2013

Capturing: PHY Layer

- → Configure CC2400
 - Set modulation parameters to match Bluetooth Smart
 - → Tune to proper channel
- → Follow connections according to hop pattern
 - → Hop increment and hop interval, sniffed from connect packet or recovered in promiscuous mode
- → Hand off bits to ARM MCU

What Info Do We Need?

Preamble	Access Address	PDU	CRC
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)

- → Access Address
 - Advertising: Fixed **0x8E89BED6**
 - Connection: Varies
- → Channel number
 - \neg Hop interval \lt
 - → Hop increment <
- → Nice to have: CRCInit

Easy mode:

Connect packet!

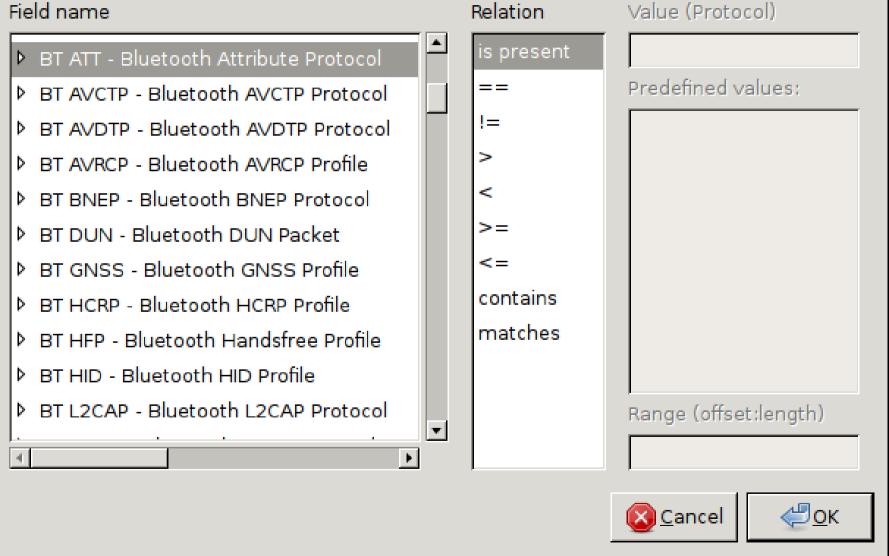
Where?

Link Layer

LSB			MSB
Preamble	Access Address	PDU	CRC
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)

Figure 2.1: Link Layer packet format

CC2400 does this What we know: Access Address FO FRFF What we have: Sea of bits What we want: Start of PDU 100011101111010101010110011100000100011001 11100100110100011101


Mike Ryan

Bluetooth Smart / Bluetooth LE

USENIX WOOT, August 2013

PHY Layer.. Link Layer..

Field name

Bluetooth Smart / Bluetooth LE

Capturing Packets... To PCAP!

- → ubertooth-btle speaks packets
- \rightarrow libpcap \rightarrow dump raw packet data
- → PPI header (similar airodump-ng and kismet)

- → We have a DLT for Bluetooth Smart
 - Unique identifier for the protocol
 - → Public release of Wireshark plugin Coming Soon^M

Wireshark Awesomeness

<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephony <u>T</u> ools <u>I</u> nternals <u>H</u> elp	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephony <u>T</u> ools <u>I</u> nternals <u>H</u> elp		
Filter: btatt Expression Clear App	Filter: btatt Expression Clear Apply Save		
No. Time Source Destination Protocol Length Info	No. Time Source Destination Protocol Length Info		
400 39.097832 ATT 39 Read By Type Request,	400 39.097832 ATT 39 Read By Type Request, Device Na		
403 39.166453 ATT 53 Read By Type Response,	403 39.166453 ATT 53 Read By Type Response, Attribute		
467 42.135804 ATT 39 Read By Type Request,	467 42.135804 ATT 39 Read By Type Request, Device Na		
470 42.203901 ATT 53 Read By Type Response,	470 42.203901 ATT 53 Read By Type Response, Attribute		
492 43.215477 ATT 39 Read By Type Request,			
520 44.565491 ATT 39 Read By Type Request, I	520 44.565491 ATT 39 Read By Type Request, Device Nam		
523 44.634088 ATT 53 Read By Type Response,	523 44.634088 ATT 53 Read By Type Response, Attribut		
4	۲		
▶ Frame 520: 39 bytes on wire (312 bits), 39 bytes captured (312 bits)	▶ Frame 523: 53 bytes on wire (424 bits), 53 bytes captured (424 bits)		
PPI version 0, 19 bytes	PPI version 0, 19 bytes		
DLT: 147, Payload: btle (Bluetooth Low Energy)	DLT: 147, Payload: btle (Bluetooth Low Energy)		
✓ Bluetooth Low Energy	✓ Bluetooth Low Energy		
Access Address: 0x50655292	Access Address: 0x50655292		
⊅ Data PDU Header: 0x0b02	♭ Data PDU Header: 0x190a		
▷ Bluetooth L2CAP Protocol	Bluetooth L2CAP Protocol		
▼ Bluetooth Attribute Protocol	✓ Bluetooth Attribute Protocol		
Opcode: Read By Type Request (0x08)	Opcode: Read By Type Response (0x09)		
Starting Handle: 0x0001	Length: 19		
Ending Handle: Oxffff	▼ Attribute Data, Handle: 0x0003		
UUID: Device Name (0x2a00)	Handle: 0x0003		
CRC: 0x11fa7f	Value: 544920424c452053656e736f7220546167		
	CRC: 0x6781c4		
0000 00 00 13 00 93 00 00 00 36 75 07 00 7e 09 00 4f 6u~0			
0010 7c 20 20 92 52 65 50 02 0b 07 00 04 00 08 01 00 .ReP	0010 d2 2a 20 92 52 65 50 0a 19 15 00 04 00 09 13 03 .* .ReP 0020 00 54 49 20 42 4c 45 20 53 65 6e 73 6f 72 20 54 .TI BLE Sensor T		
0020 ff ff <u>00 2a</u> 7f fa 11*	0030 61 67 c4 81 67 agg		
◯ 🛃 UUID (btatt.uuid16), 2 bytes P Profile: Default	🔾 💅 Value (btatt.value), 17 bytes 🕴 P Profile: Default		

Mike Ryan

Bluetooth Smart / Bluetooth LE

USENIX WOOT, August 2013

Promiscuous Mode

- → Techniques for recovering
 - → Access Address
 - → CRCInit
 - → Hop Interval
 - → Hop Increment

Recovering Access Address

- Sit on data channel waiting for empty data packets
- → Collect candidate AA's and pick one when it's been observed enough

Not depicted: whitening!

Mike Ryan

Recovering CRCInit

→ Filter packets by Access Address
 → Plug CRC into LFSR and run it backward

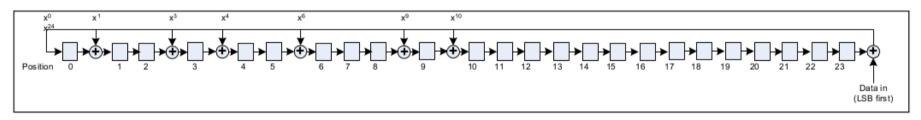


Figure 3.2: The LFSR circuit generating the CRC

See also "Bluesniff: Eve meets Alice and Bluetooth", USENIX WOOT '07

Mike Ryan

Bluetooth Smart / Bluetooth LE

Recovering Hop Interval

- → Observation: 37 is prime
- → Sit on data channel and wait for two consecutive packets

 $\frac{\Delta t}{37} = hop interval$

Recovering Hop Increment

- → Start on data channel 0, jump to data channel 1 when a packet arrives
- → We know hop interval, so we can calculate how many channels were hopped between 0 and 1

Recovering Hop Increment (math)

0 + hopIncrement × channelsHopped ≡ 1 (mod 37) hopIncrement ≡ channelsHopped⁻¹ (mod 37) channelsHopped⁻¹ ≡ channelsHopped³⁷⁻² (mod 37)

We use a LUT to convert that to hop increment

USENIX W<u>OOT, August 2013</u>

Sniffing Summary

- → Connection following
- → Promiscuous: Recovering the four values
 - → Access address
 - → CRCInit
 - → Hop interval
 - → Hop Increment

Outline

- →What is Bluetooth Low Energy?
- →Protocol overview
- →Sniffing Techniques
- →[In]security

→Injection

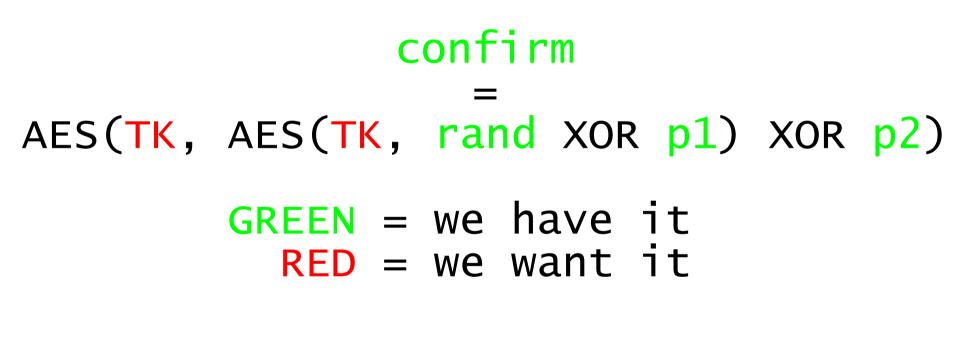
Encryption

- → Provided by link layer
- → Encrypts and MACs PDU
- → AES-CCM

LSB

$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ MSB

Preamble	Access Address	PDU	CRC
rieambie	Access Address	1 DO	CINC
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)


Figure 2.1: Link Layer packet format

Custom Key Exchange Protocol

- → Three stage process
- → 3 pairing methods
 - → Just Works[™]
 - → 6-digit PIN
 - → 00B

→ "None of the pairing methods provide protection against a passive eavesdropper" -Bluetooth Core Spec

Cracking the TK

TK: integer between 0 and 999,999 Just Works[™]: always 0!

Cracking the TK – With crackle

Total time to crack: <1 second

And That's It

- $\neg TK \rightarrow STK$
- $\neg \mathsf{STK} \to \mathsf{LTK}$
- \rightarrow LTK \rightarrow Session keys

KEY EXCHANGE = BROKEN 100% PASSIVE

LTK Reuse

- → Good for security: pair in a faraday cage
- → Counter-mitigation: Active attack to force re-pairing

Decrypting

- → Assumption: Attacker has LTK reused!
- → Procedure
 - → Attacker passively capturing packets
 - Connection established
 - Session information captured

Decrypting – With crackle

- → Yes, crackle does that too!
- → crackle will decrypt
 - \neg a PCAP file with a pairing setup
 - \neg a PCAP file with an encrypted session, given an LTK

Am I Affected?

- → Probably
- → Exception: Some vendors implement their own security on top of GATT
 - → Did they talk to a cryptographer?

Security Recap

- → Key exchange broken
- → LTK reuse means all communication is effectively compromised

- → 99% passive
 - → Worst case scenario: one active attack with off-the-shelf hardware

Outline

- →What is Bluetooth Low Energy?
- →Protocol overview
- →Sniffing Techniques
- →[In]security
- →Injection

Injection

- → Pretty much the same as receiving, opposite direction
- → Follow the spec!
 - → Link layer header
 - → Payload data
- → Hand that off to Ubertooth
 - → Calculate CRC
 - → Whiten
- \rightarrow Devil is in the CC2400 details

Demo

Mike Ryan

Bluetooth Smart / Bluetooth LE

USENIX WOOT, August 2013

Capabilities

- → Ubertooth
 - Passively intercept Bluetooth Smart
 - Promiscuous mode
 - Injection
- → Wireshark plugins
- → crackle
 - → Crack TK's sniffed with Ubertooth
 - → Decrypt PCAP files with LTK

Software

- → Ubertooth and libbtbb
 - → http://ubertooth.sourceforge.net/

→ crackle

- http://lacklustre.net/projects/crackle/
- → nano-ecc (8-bit ECDH and ECDSA)
 - https://github.com/iSECPartners/nano-ecc

Thanks

Mike Ossmann Dominic Spill

Mike Kershaw (dragorn) #ubertooth on freenode bluez Bluetooth SIG USENIX iSEC Partners

Thank You

Mike Ryan iSEC Partners

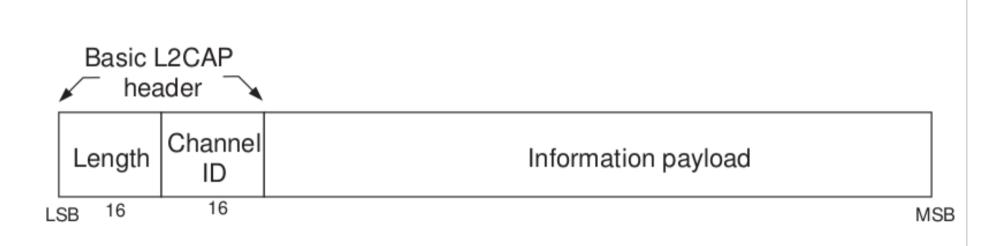
@mpeg4codec
mikeryan@isecpartners.com
http://lacklustre.net/

Apocrypha (extra)

<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew	<u>G</u> o	<u>C</u> apture	<u>A</u> nalyze	<u>S</u> tatis	tics Tele	ephon <u>y</u>	Too	ols	<u>I</u> nternals	<u>H</u> elp			
Filte	Filter: btle.ll_control_opcode Expression Clear Apply Save														
No.	Time	Sourc	e D	estination	Protocol		Length	Info							
136	5 0.00	e			Bluetooth LE 41 LL Control PDU:						PDU: LL_	CHANNE	EL_MAP_	REQ	
٠												Þ			
▶ Frame 1365: 41 bytes on wire (328 bits), 41 bytes captured (328 bits) on interface														erface l	
ÞΡ	PI ver	version 0, 24 bytes													
D	LT: 14	: 147, Payload: btle (Bluetooth Low Energy)													
▼ Bluetooth Low Energy															
Access Address: 0xaf9aa518															
▷ Data PDU Header: 0x080f															
	LL Co	ntrol	Орс	ode: LL_C	CHANNEL_	MAP_RE	Q (OxO))							
	LL Co	ntrol	Dat	a: OOfcff	ffelf <mark></mark> 010	1									
	CRC:	0x9bb2	2c0												

0x1FFEFFFC00: remove channels 12, 27–36

Mike Ryan


Bluetooth Smart / Bluetooth LE

Encryption Mitigation (extra)

- → Every session uses a different session key
- Every session uses several nonces
 <u>Solution</u>: jam the connection to restart a session

→ LTK exchanged once, used many times <u>Solution</u>: inject LTK_REJECT_IND message

L2CAP (extra)

ATT/GATT (extra)

- → Services: groups of characteristics
- → Characteristics
 - Operations
- → Everything identified by UUID
 - → 128 bit
 - Sometimes shortened to 16 bits

Example GATT Service: Heart Rate (extra)

- → Service: **0x180D**
- → Characteristic 1: 0x2A37 Heart Rate
 - → Can't read or write
 - → Notify: subscribe to updates
- → Characteristic 2: 0x2A38 Sensor Location
 - → Readable: 8 bit int, standardized list
- → Other characteristics: 0x2803, 0x2902, ...